Showing posts with label ghaziabad. Show all posts
Showing posts with label ghaziabad. Show all posts

Tuesday 15 July 2014

GATE 2015: MECHANICAL ENGINEERING COACHING IN CHIRANJEEV VIHAR AND GOVINDPURAM GHAZIABAD

GATE 2015
MECHANICAL ENGINEERING COACHING IN
CHIRANJEEV VIHAR AND GOVINDPURAM

THE SALIENT POINTS OF THE COURSE:

  • THE COURSE HAS BEEN DESIGNED TO HELP THOSE STUDENTS WHO HAVE DIFFICULTIES IN THE BASIC CONCEPTS.
  • AT FIRST THE BASIC CONCEPTS WOULD BE TAUGHT AND THEN ADVANCED CONCEPTS WILL BE INTRODUCED.
  • WHILE TEACHING A CONCEPT, SIMULTANEOUSLY MULTIPLE CHOICES QUESTIONS WILL BE SHOWN FROM THAT CONCEPT.
  • MORE THAN 2500 MULTIPLE CHOICES QUESTIONS WILL BE DISCUSSED WITH SOLUTIONS.
  • PROBLEM SOLVING TECHNIQUES WOULD BE TAUGHT WITH THE HELP OF MASTER CHARTS.
  • TWO HOURS PER DAY SIX DAYS PER WEEK CLASSES.
  • CLASSES ON IMPROVING LEARNING ABILITIES, INCREASING CONCENTRATION AND THE SCIENTIFIC STUDYING TECHNIQUES WILL BE TAKEN.
  • CONCEPTS WOULD BE TAUGHT USING ANIMATIONS, GRAPHS, PICTOGRAMS, MNEMONICS AND OTHER LEARNING ENHANCEMENT TOOLS.
  • ONLY 20 STUDENTS PER BATCH TO FOCUS MORE ON THE INDIVIDUAL NEEDS OF THE STUDENTS.
  • ASSISTANCES FOR INDIVIDUAL PSU (LIKE ONGC, IOC etc.)
  • TRIAL CLASSES ARE THERE TO BE AWARE OF THE PERFORMANCES OF THE CLASSES.
  • HIGH TECH STUDY MATERIALS AT AFFORDABLE PRICE.
  • COURSE DURATION IS SIX MONTHS.
  • INTRODUCTORY PRICES ARE AS LOW AS @₨ 2500 PER MONTH
  • CLASSES WILL BE STARTED FROM 25th JULY; 2014
  • CALL AT # +91-9458042791; +91-9555921800; +91-9678534833

CRACKGATE EDUCATION
House No: 237; Sector – 5; Chiranjeev Vihar, Ghaziabad
                     Contact No : +91-9458042791; +91-9555921800; +91-9678534833


Tuesday 10 September 2013

STRATIFIED CHARGE INTERNAL COMBUSTION ENGINE

Internal combustion engines or popularly known as IC Engines are life line of human society which mostly served as a mobile, portable energy generator and extensively used in the transportation around the world. 

There are many types of IC Engines, but among them two types known as petrol or SI engines and diesel or CI engines are well established. Most of the automotive vehicles run on either of the engines. Despite their wide popularity and extensive uses, they are not fault free. 

Both SI Engines and CI Engines have their own demerits and limitations. 


Limitations of SI Engines (Petrol Engines) 

Although petrol engines have very good full load power characteristics, but they show very poor performances when run on part load. 

Petrol engines have high degree of air utilisation and high speed and flexibility but they can not be used for high compression ratio due to knocking and detonation. 

Limitations of CI or Diesel Engines: 

On the other hand, Diesel engines show very good part load characteristics but very poor air utilisation, and produces unburnt particulate matters in their exhaust. They also show low smoke limited power and higher weight to power ratio. 

The use of very high compression ratio for better starting and good combustion a wide range of engine operation is one of the most important compulsion in diesel engines. High compression ratio creates additional problems of high maintenance cost and high losses in diesel engine operation. 

For an automotive engine both part load efficiency and power at full load are very important issues as 90% of their operating cycle, the engines work under part load conditions and maximum power output at full load controls the speed, acceleration and other vital characteristics of the vehicle performance. 

Both the Petrol and Diesel engines fail to meet the both of the requirements as petrol engines show good efficiency at full load but very poor at part load conditions, where as diesel engines show remarkable performance at part load but fail to achieve good efficiency at full load conditions. 

Therefore, there is a need to develop an engine which can combines the advantages of both petrol and diesel engines and at the same time avoids their disadvantages as far as possible. 

Working Procedures: 

Stratified charged engine is an attempt in this direction. It is an engine which is at mid way between the homogeneous charge SI engines and heterogeneous charge CI engines. 

Charge Stratification means providing different fuel-air mixture strengths at various places inside the combustion chamber. 

It provides a relatively rich mixture at and in the vicinity of spark plug, where as a leaner mixture in the rest of the combustion chamber. 

Hence, we can say that fuel-air mixture in a stratified charge engine is distributed in layers or stratas of different mixture strengths across the combustion chamber and burns overall a leaner fuel-air mixture although it provides a rich fuel-air mixture at and around spark plug. 

Tuesday 31 July 2012

SMALL ENGINEERING COLLEGES OF GHAZIABAD: A BLEAK FUTURE


Economics says "When Supply is more than the Demand of a product, the Price falls." This is particularly true in the case of Technical Education in U.P. and perhaps upto some extent in the country itself.

Over the past few years the supply is outstripping the demand for Engineering and Management seats in the country. Just take the example of Uttar Pradesh, the most populous state of India is home to about 333 Engineering colleges which cumulatively offer a total seats of 1,15,379 in Engineering Education where as according to University datas the total number of students took admission in various engineering colleges after qualifying SEE amounts to mere 25,903. So, what happens to the vacant seats? And this year the figures are not going to be improved it seems.

This year a total 1,60,561 candidates had registered for the State Entrance Examination, out of whom, 1,29,924 have qualified. But, there are approximately 1.33 lakh B.Tech seats in the Engineering colleges affiliated to GBTU and MTU.

There are clearly a huge gap between the supply and demand of Engineering seats. In this situation, it has been believed that many small colleges will be bankrupt due to the lack of students. Many colleges have defered the salaries of the teachers and other employees due to the revenue crunch. It seems a grim scenario ahead for those colleges.

Due to the revenue crunch, promoters of small colleges are taking the refuge of cost cutting, and as a part of that they are trying to trim their faculty strength. Surely, this will affect the quality of the education as the each teacher will be over burdened and perhaps have to take five classes per day, where as the AICTE limits the load at best 18 classes per week. Also, most of the colleges don't follow the exact teacher students ratio of 1:20 prescribed by the apex body.

Many promoters are planning to opt out by selling their stakes in the colleges. The causes of their exits are the facts that running colleges in western U.P. is no longer a profitable business. They have cited that due to lack of students in taking admission, the colleges are no longer the chickens that lay gold eggs, which were in fact so just three years ago. So, why these colleges suddenly loss their values? What are the reasons behind these failures?

There are several reasons for the fall in numbers of students opting B.Tech courses. The most vital reason is the very high tution fees in colleges under MTU and GBTU compared to colleges in other states like Karnataka, Punjab and Rajasthan. Most of the colleges here charge more than 90,000.00 in the first year B.Tech where as colleges in other states charges below 60,000.00, even colleges in Punjab and West Bengal charge below 50 thousand and this is going to be a major factor.

The 2nd factor is the placement after the completion of the degree. Although many colleges claim tall, citing a long list of companies taking interest to place their students in very good packages, but reality always bites hard. The negative publicity by the ex students are also eating the pie here and there is no solution other than boosting the placement record by making a good relation with the HR of these companies by the respective college authorities.

The third most important factor is the sagging quality of the available faculty members. Many teachers although possess M.Tech degrees are not competent to impart quality education due to lack of depth of required knowledge as well as the essential communicating power required to be a good teacher. In some cases, due to over burdened schedule, a good teacher becomes unable to teach in the class. Just imagine the mental fatigue a teacher experienced while taking 5th or 6th class in a day when each class is of 55 min. duration.

A college has to show money to run the next three years during the visits from AICTE. So all the colleges have to show enough balance to pay the salaries of the employees for atleast three years, otherwise they won't get the permission to run the colleges, still some of them couldn't pay the salaries of the teachers and staffs. Why? Becouse they must have showed enough balances to acquire the clearences during the AICTE visits. Where does the money go? Vanished! Or siphoned off? There are several "skips" of the rules and regulations these college authorities used to practise.

Thursday 19 July 2012

QUESTIONS BANK 5 : FORCE AND FORCE SYSTEM

(I am going to publish a question bank for EME-102/EME-202 of 1st yr. MTU; Greater Noida. Some pages from the book .......Subhankar Karmakar)
 

QUESTIONS BANK 4 : FORCE AND FORCE SYSTEM

(I am going to publish a question bank for EME-102/EME-202 of 1st yr. MTU; Greater Noida. Some pages from the book .......Subhankar Karmakar)

QUESTIONS BANK 3 : FORCE AND FORCE SYSTEM

(I am going to publish a question bank for EME-102/EME-202 of 1st yr. MTU; Greater Noida. Some pages from the book .......Subhankar Karmakar)

Thursday 12 July 2012

QUESTIONS BANK 2: FORCE AND FORCE SYSTEM

(I am going to publish a question bank for EME-102/EME-202 of 1st yr. MTU; Greater Noida. Some pages from the book .......Subhankar Karmakar)
1)      Explain the principle of Super-position.

Ans: The principle of superposition states that “The effect of a force on a body does not change and remains same if we add or subtract any system which is in equilibrium.”
In the fig 4 a, a force P is applied at point A in a beam, where as in the fig 4 b, force P is applied at point A and a force system in equilibrium which is added at point B. Principle of super position says that both will produce the same effect.


2)      What is “Force-Couple system?”

Ans: When a force is required to transfer from a point A to point B, we can transfer the force directly without changing its magnitude and direction but along with the moment of force about point B.

As a result of parallel transfer a system is obtained which is always a combination of a force and a moment or couple. This system consists of a force and a couple at a point is known as Force-Couple system.
      In fig 5 a, a force P acts on a bar at point A, now at point B we introduce a system of forces  in equilibrium (fig 5 b), hence according to principle of superposition there is no change in effect of the original system. Now we can reduce the downward force P at point A and upward force P at point B as a couple of magnitude Pxd at point B (fig 5 c).

3) What do you understand by Equivalent force systems?

Ans: Two different force systems will be equivalent if they can be reduced to the same force-couple system at a given point. So, we can say that two force systems acting on the same rigid body will be equivalent if the sums of forces or resultant and sums of the moments about a point are equal.


4)      What is orthogonal or perpendicular resolution of a force?


Ans: The resolution of a force into two components which are mutually perpendicular to each other along X-axis and Y-axis is called orthogonal resolution of a force.
If a force F acts on an object at an angle θ with the positive X-axis, then its component along X-axis is Fx = Fcosθ, and that along Y-axis is Fy = Fsinθ






5) What is oblique or non-perpendicular resolution of a force?

Ans: When a force is required to be resolved in to two directions which are not perpendiculars to each other the resolution is called oblique or Non-perpendicular resolution of a force.

   
       FOA = (P sin β)/ sin (α +β)
 FOB = (P sin α)/ sin (α +β)






Wednesday 11 July 2012

QUESTION BANK 1: FORCE AND FORCE SYSTEM

(I am going to publish a question bank for EME-102/EME-202 of 1st yr. MTU; Greater Noida. Some pages from the book .......Subhankar Karmakar)

QUESTION BANK: ENGINEERING MECHANICS

by Er. Subhankar Karmakar
Unit: 1 (Force System)

VERY SHORT QUESTIONS (2 marks):


1)      What is force and force system?

Ans: A force is a physical quantity having magnitude as well as direction. Therefore, it is a   vector quantity. It is defined as an "external agency" which produces or tends to produce or destroys or tends to destroy the motion when applied on a body.

Its unit is Newton (N) in S.I. systems and dyne in C.G.S. system.

When two or more forces act on a body or particle, it is called force system. Therefore, a force system is a collection of two or more forces.


2)      What is static equilibrium? What are the different types of static equilibrium?

Ans: A body is said to be in static equilibrium when there is no change in position as well as no rotation exist on the body. So to be in equilibrium process, there must not be any kind of motions ie there must not be any kind of translational motion as well as rotational motion.
We also know that to have a linear translational motion we need a net force acting on the object towards the direction of motion, again to induce an any kind of rotational motion, a net moment must exists acting on the body. Further it can be said that any kind of complex motion can be resolved into a translational motion coupled with a rotating motion.

“Therefore a body subjected to a force system would be at rest if and only if the net force as well as the net moment on the body is zero.”

There are three types of Static Equilibrium
1.      Stable Equilibrium
2.      Unstable Equilibrium
3.      Neutral Equilibrium


3)      What are the characteristics of a force?

Ans: A force has four (4) basic characteristics.
·         Magnitude: It is the value of the force. It is represented by the length of the arrow that we use to represent a force.
·         Direction: A force always acts along a line, which is called as the “line of action”. The arrow head we used to represent a force is the direction of that force.
·         Nature or Sense: The arrow head also represent the nature of a force. A force may be a pull or a push. If a force acts towards a particle it will be a push and if the force acts away from a point it is pull.
·         Point of Application: It is the original location of a point on a body where the force is acting. 

4)      What are the effects of a force acting on a body?

Whenever a force acts on a body or particle, it may produce some external as well as internal effects or changes.
·         A force may change the state or position of a body by inducing motion of the body. (External effect)
·         A force may change the size or shape of an object when applied on it. It may deform the body thus inducing internal effects on the body.
·         A force may induce rotational motion into a body when applied at a point other than its center of gravity.
·         A force can make a moving body into an equilibrium state at rest.

5)      What is composition and resolution of forces?

Ans: Composition of forces: Composition or compounding is the procedure to find out single resultant force of a force system
Resolution of forces: Resolution is the procedure of splitting up a single force into number of components without changing the effect of the same.

6)      What is Resultant and Equilibrant?

Ans: Resultant: The resultant of a force system is the Force which produces same effect as the combined forces of the force system would do. So if we replace all components of the force by the resultant force, then there will be no change in effect.
The Resultant of a force system is a vector addition of all the components of the force system. The magnitude as well as direction of a resultant can be measured through analytical method.

Equilibrant: Any concurrent set of forces, not in equilibrium, can be put into a state of equilibrium by a single force. This force is called the Equilibrant. It is equal in magnitude, opposite in sense and co-linear with the resultant. When this force is added to the force system, the sum of all of the forces is equal to zero.

7)      Explain the principle of Transmissibility?

Ans: The principle of transmissibility states “the point of application of a force can be transmitted anywhere along the line of action, but within the body.”

The fig 3 a shows a force F acting at a point of application A and fig 3 b, the same force F acts along the same line of action but at a different point of action at B and both are equivalent to each other.

Wednesday 20 June 2012

Private Engineering Colleges in Ghaziabad: Will They Survive?

There are some very good Engineering colleges in and around Ghaziabad. These colleges not only topped the annual ranks of formerly UPTU or its later avatars GBTU and MTU, but during these periods they have curved a niche for themselves.

There are colleges like Ajay Kumar Garg Engineering College or AKGEC, ABES, KIET, RKGIT and IMSEC in Ghaziabad which are doing good in imparting Technical Education and already established a brand name in this arena. They draw fair numbers of students every year but there are other colleges which are practically starving due to the lack of students as well as quality students.

The second rung colleges in Ghaziabad:

All the engineering colleges in Western UP (including NCRs ie. Ghaziabad, Noida and Greater Noida) are affiliated to the Mahamaya Technical University, Noida. There are several good colleges in Ghaziabad like Ideal Institute of Technology in Govindpuram, VIET in Dadri, BBDIT in Meerat Road, Sunderdeep Engineering College in Dasna are as good as the private colleges of Karnataka. Then there are VITS, SGIT, LKEC near Jindal Nagar, SIET and RKGEC in Pilakhuwa.

The last rung colleges are the newly established colleges like Bhagwati Institute of Technology in Masuri, Aryan Institute of Technology, Jindal Nagar, Bhagwant Institute of Technology, MAIT in near Jindal Nagar, Satyam, ICE in Pilakhuwa. The problem they are suffering is the lack of students. Last year many seats remained vacant, even the concerned colleges offered more than 15% in commission, still number of students getting admission was very low.

Last year the scenario was very grim, many colleges were finding tough to pay the salaries to their employees. Moreover, as the number of quality students dwindled over the passage of time, pass rate also plunged dramatically.

Just imagine the predicament of the colleges here, in one side the students of the subsequent batches are coming more dull and blunt where as the syllabus has been being modified every third year and every new syllabus is tougher than its previous versions. So, can you guess the outcome? Yes, rapidly falling over all pass rate and the fall of the ranks of these poor colleges. The cascading effects of these events are the sharp fall of the revenue earned by these colleges which in turn makes them unable to pay good salary to its employees which again becomes the cause of mass exodus of the good teachers to the cash rich colleges of Greater Noida and as a result the survival of these colleges gradually becomes tougher. It's a vicious trap and none of the colleges know how to deal with the situation.

Monday 28 November 2011

QUESTION BANKS: Analyse the following Trusses:

 Analyse the following Trusses:

(1)      A cantilever truss has been as shown in the figure. Find the value of W which will produces a force of magnitudes 15 kN  in the member AB.







(2)        A cantilever truss is loaded as shown in the figure. Find the nature and magnitudes of the forces in each link.





(3)      A cantilever truss has been as shown in the figure. Find the value of W which will produces a force of magnitudes 15 kN  in the member AB.









(4)      A truss has been loaded as shown in the figure. Find the nature and the magnitudes of the forces in the links BC, CH and GH by the methods of sections.







(5) A truss has been loaded as shown in the figure. Find the internal forces in each of the beam.









(6)      A truss has been loaded as shown in the figure. Find the forces in each member and tabulate them by any methods.




compiled by Subhankar Karmakar

more content: click the following links for more questions.

THEORETICAL QUESTIONS ON SIMPLE TRUSSES part-3

QUESTION BANK : ENGINEERING MECHANICS PART-2

QUESTION BANK : ENGINEERING MECHANICS

 

THEORETICAL QUESTIONS ON SIMPLE TRUSSES

SHORT QUESTIONS: TOPIC - TRUSS ANALYSIS

1)      What is a truss? Classify them with proper diagrams.
2)      State the differences between a perfect truss and an imperfect truss.
3)      Distinguish between a deficient truss and a redundant truss.
4)      Write the Maxwell’s Truss Equation.
5)      What are the assumptions made, while finding out the forces in the various members of a truss?
6)      What are the differences between a simply supported truss and a cantilever truss? Discuss the method of finding out reactions in both the cases.


Analyse the following Trusses:
 
(1)      Analyse the Truss by the method of Joints.
(2) Find the internal forces on the links 1, 2 and 3 by the method of Sections.
(3) Determine the magnitude and the nature of the forces in the members BC, GC and GF of the given truss.
(4)   A truss of span 10 m is loaded as shown in the figure. Find the forces in all the links by any method.






compiled by Subhankar Karmakar 

Friday 19 August 2011

CENTROID OF A COMPOSITE LINE

In the figure, a composite line A-B-C-D is made of three straight lines AB, BC, CD as shown in the figure. If the coordinate of point A is (5,5), find the centroid of the composite line.


Solution: At first, the composite line is divided into three parts.








Part -1 : The line AB : Let the centroid of the line be G1(X1,Y1)


length, L1 = 40 mm;                  


X1 = 4 + (40*cos 600)/2 = 14  
Y1 = 4 + (40*sin 600)/2 = 21.32








Part -2 : The line BC : Let the centroid of the line be G2(X2,Y2)


length, L2 = 15 mm; 


X2 = 4 + (40*cos 600) + 15/2 = 31.5 
Y2 = 4 + (40*sin 600) = 38.64




Part -3 : The line CD : Let the centroid of the line be G3(X3,Y3)


length, L3 = 20 mm; 

X3 = 4 + (40*cos 600) + 15 = 39 
Y3 = 4 + (40*sin 600) - 20/2 = 28.64



If the centroid of the composite line be G  (Xg,Yg)

Xg = (∑LiXi)/(∑Li



    = (L1X1 + L2X2 + L3X3)/(L1 + L2 + L3)
    = (40 x 14 + 15 x 31.5 + 20 x 39)/(40 + 15 + 20) 
    = 24.17
     

Yg = (∑LiYi)/(∑Li



    = (L1Y1 + L2Y2 + L3Y3)/(L1 + L2 + L3)
    = (40 x 21.32 + 15 x 38.64 + 20 x 28.64)/(40 + 15 + 20) 
    = 26.74



Thursday 26 August 2010

CENTROID OF COMPLEX GEOMETRIC FIGURES:




So in this articles, we are going to discuss the concepts of centroid for one dimensional as well as two dimensional objects. 

Let's first discuss about 1D and 2D objects, one by one, an 1D object is a line, practically a metallic rod will be considered as a linear, 1D object. Where as any thin plate of negligible thickness can be considered a 2D body. Suppose we have a thin metallic rectangular plate. If it is considered as a 2D rectangular area of b X h.

The concept of centroid has been developed on the basis of resultant of several areas. We know that an area can be represented as the cross product of two vectors, hence it is also an vector. Suppose we have an area A, in a cartesian 2D coordinate system. We just divide the area into n parts, and represent them as a1, a2, a3, ..... an.

Let the elemental areas are at a distance x1, x2, x3, ..... xn, from Y axis and y1, y2, y3, ...yn from X axis.

The total moments produced about Y axis will be equal to the summation of all the individual moments produced by n elemental areas. 


Now moment is a vector quantity and we know vectors of same kind can be added together, therefore, all the n moment vectors can be added to get a single value of Resultant Moment. 

We also know this resultant moment's position vector. Let the resultant moment passes through a point G. The point through which resultant moment passes through is called Center of the Area or Centroid.

How can we find out the point G, whose coordinates are (Xg,Yg)?

As moment of an area also obeys VARIGNON'S THEOREM OF MOMENT, then sum of all the moments produced by individual elemental areas will exactly be equal to the moment produced by the total area, i.e. the resultant of all those elemental areas. Now if all the areas are added to have the resultant area which will pass through the centroid G such that it produces a moment of XgA about Y axis and YgA about X axis.

But Varignon's theorem states us that, for a vector system, resultant vector produces the moment about a point, is exactly equal to the sum of all the moments produced by all elemental areas about the same point and in the same plane. Hence, we can write now that,

Sum(a1x1+ a2x2+ + +anxn) = AXg
we can use summation sign ∑ to represent these equations,
∑aixi = (∑ai)Xg
=> Xg = (∑aixi)/((∑ai)


Sum(a1y1+ a2y2+ + +anyn) = AYg
∑aiyi = (∑ai)Yg
=> Yg = (∑aiyi)/((∑ai)

Algorithm to find out the Centroid G(Xg, Yg) of a Complex Geometric Figure.


Step1:
Take a complex 2D figure like an Area or Lamina.


Step2:
Try to identify the basic figures whose algebraic combination produces our problem figure, whose centroid we shall find out.


Step3:
Choose a coordinate system, and make it as our frame of reference. All the distances and coordinate must be define with respect to our frame of reference.


Step4:
Compute the area (ai), coordinates of their own centroid Gi (xi, yi) for each and every elemental areas. While measuring the centroids, all the measurements will be based on according to our chosen Axes.


Step5:
If any particular area has to subtracted to get the complex figure, the area will be negative, where as any area addition will be positive area.


Step6:
If the Centroid of the complex figure be G(Xg,Yg)then,

=> Xg = (∑aixi)/((∑ai)

=> Yg = (∑aiyi)/((∑ai)


Here G1 is the centroid of the part one where G2 is the centroid of the circular area that has to be removed where as G3 is the centroid of the triangular area that has to be removed also.

If we are asked to find moment of inertia of an area, which is nothing but the "second moment of area" then we shall have to find the centroidal moment of inertia first. Then we shall transfer the Moment of Inertia to another axis ie we shall apply parallel axis theorem to transfer moment of inertia from one axis (here centroidal axis) to another parallel axis.

Monday 9 November 2009

MULTIPLE CHOICE QUESTIONS:
sub: engg. mechanics.
Sub: Engineering Mechanics,
Sub Code: EME-202, Semester: 2nd Sem, Course: B.Tech

Q.1) The example of Statically indeterminate structures are,
a. continuous beam,
b. cantilever beam,
c. over-hanging beam,
d. both cantilever and fixed beam.

Q.2) A redundant truss is defined by the truss satisfying the equation,
a. m = 2j - 3,
b. m < 2j + 3, 
c. m > 2j - 3,
d. m > 2j + 3

Q.3) The property of a material to withstand a sudden impact or shock is called,
a. hardness 

b. ductility, 
c. toughness, 
d. elasticity of the material

Q.4) The stress generated by a dynamic loading is approximately _____ times of the stress developed by the gradually applying the same load.

Q.5) The ratio between the volumetric stress to the volumetric strain is called as
a. young's modulus
b. modulus of elasticity
c. rigidity modulus,
d. bulk modulus

Q.6) In a Cantilever beam, the maximum bending moment is induced at
a. at the free end
b. at the fixed end
c. at the mid span of the beam
d. none of the above

Q.7) The forces which meet at a point are called
a. collinear forces
b. concurrent forces
c. coplanar forces
d. parallel forces

Q.8) The coefficients of friction depends upon
a. nature of the surface
b. shape of the surface
c. area of the contact surface
d. weight of the body

Q.9) The variation of shear force due to a triangular load on simply supported beam is
a. uniform 
b. linear 
c. parabolic 
d. cubic

Q.10) A body is on the point of sliding down an inclined plane under its own weight. If the inclination of the plane is 30 degree, then the coefficient of friction between the planes will be

a. 1/√3
b. √3
c. 1
d. 0

11. A force F of 10 N is applied on a mass of 2 kg. What is the acceleration of the mass?
A. 2 m/s²
B. 5 m/s²
C. 10 m/s²
D. 20 m/s²
Answer: B

12. What is the moment of a force of 50 N applied at a distance of 2 meters from a fixed point?
A. 25 Nm
B. 50 Nm
C. 100 Nm
D. 200 Nm
Answer: C

13. A 2000 kg car traveling at 20 m/s collides with a 500 kg car traveling at 10 m/s in the opposite direction. What is the velocity of the cars after the collision?
A. 6.7 m/s
B. 10 m/s
C. 13.3 m/s
D. 16.7 m/s
Answer: A

14. A 500 N force is applied to a 100 kg object on a flat surface. What is the coefficient of static friction if the object is just about to move?
A. 0.5
B. 0.7
C. 0.8
D. 1.0
Answer: D

15. A beam of length 4 m and moment of inertia of 1000 kg/m² is supported at each end. What is the maximum load that the beam can support if it is uniformly loaded?
A. 500 N
B. 1000 N
C. 2000 N
D. 4000 N
Answer: C

16. A block of mass 2 kg is hanging from a string. What is the tension in the string if the block is stationary?
A. 19.6 N
B. 20 N
C. 29.4 N
D. 30 N
Answer: B

17. A roller coaster car of mass 500 kg is traveling at 20 m/s at the bottom of a  loop-the-loop. What is the minimum radius of the loop required for the car to remain in contact with the track?
A. 40 m
B. 50 m
C. 60 m
D. 70 m
Answer: D

18. A body of mass 10 kg is moving with a velocity of 5 m/s. What is the kinetic energy of the body?
A. 50 J
B. 100 J
C. 125 J
D. 250 J
Answer: B

19. A body of mass 5 kg is placed on an inclined plane which makes an angle of 30° with the horizontal. What is the force acting on the body parallel to the plane?
A. 4.9 N
B. 7.5 N
C. 8.7 N
D. 10 N
Answer: B

20. A force of 100 N is applied on a body of mass 20 kg. What is the work done by the force in moving the body through a distance of 5 meters?
A. 250 J
B. 500 J
C. 1000 J
D. 2000 J
Answer: B

21. What is the principle of moments?
A. The sum of the moments about any point of a system in equilibrium is zero.
B. The sum of the forces acting on a system in equilibrium is zero.
C. The sum of the torques acting on a system in equilibrium is zero.
D. The sum of the accelerations of a system in equilibrium is zero.

Answer: A

22. What is the difference between static and dynamic equilibrium?
A. In static equilibrium, there is no motion, while in dynamic equilibrium, there is motion.
B. In static equilibrium, the forces are balanced, while in dynamic equilibrium, the forces are unbalanced.
C. In static equilibrium, the sum of the forces and moments is zero, while in dynamic equilibrium, the sum of the forces and moments is not zero.
D. In static equilibrium, the sum of the forces and moments is not zero, while in dynamic equilibrium, the sum of the forces and moments is zero.

Answer: C

23. What is the moment of inertia?
A. The resistance of an object to angular acceleration.
B. The force required to rotate an object.
C. The distance between the center of mass and the axis of rotation.
D. The angular velocity of an object.

Answer: A

24.What is the difference between stress and strain?
A. Stress is the deformation per unit length, while strain is the force per unit area.
B. Stress is the force per unit area, while strain is the deformation per unit length.
C. Stress is the force applied to an object, while strain is the resulting deformation.
D. Stress is the resistance of an object to deformation, while strain is the resistance of an object to stress.

Answer: B

25. What is Hooke's Law?
A. The stress applied to an elastic material is proportional to the strain produced.
B. The strain produced in an elastic material is proportional to the stress applied.
C. The deformation produced in an elastic material is proportional to the force applied.
D. The force applied to an elastic material is proportional to the deformation produced.

Answer: A

26.What is the difference between a beam and a truss?
A. A beam is a one-dimensional structure, while a truss is a two-dimensional structure.
B. A beam is made up of several members connected at their ends, while a truss is made up of several members connected at their joints.
C. A beam is used to support loads that are perpendicular to its axis, while a truss is used to support loads that are parallel to its axis.
D. A beam is a rigid structure, while a truss is a flexible structure.

Answer: B

27. What is the difference between a force and a moment?
A. A force is a vector quantity, while a moment is a scalar quantity.
B. A force is a scalar quantity, while a moment is a vector quantity.
C. A force is a push or a pull, while a moment is a twist or a turn.
D. A force is a linear motion, while a moment is a rotational motion.

Answer: C

28. What is the center of mass?
A. The point where the weight of an object is concentrated.
B. The point where the forces acting on an object are balanced.
C. The point where the moments acting on an object are balanced.
D. The point where the acceleration of an object is zero.

Answer: A

29. What is the method used to determine the forces in a truss?
A. Method of joints
B. Method of sections
C. Both A and B
D. None of the above

Answer: C

30. In a truss, which members are in tension and which members are in compression?
A. All members are in tension.
B. All members are in compression.
C. Members with angled force vectors are in tension, and members with vertical force vectors are in compression.
D. Members with vertical force vectors are in tension, and members with angled force vectors are in compression.

Answer: C

31. What is the difference between a simple truss and a compound truss?
A. A simple truss is made up of one triangle, while a compound truss is made up of two or more triangles.
B. A simple truss is made up of straight members only, while a compound truss may have curved members.
C. A simple truss is statically determinate, while a compound truss may be statically indeterminate.
D. A simple truss is used for short spans, while a compound truss is used for long spans.

Answer: A

32.How many unknown forces are there in a simple truss?
A. 2
B. 3
C. 4
D. It depends on the number of joints in the truss.

Answer: B

33. What is the method used to analyze a truss with multiple loadings?
A. Superposition method
B. Substitution method
C. Iterative method
D. None of the above

Answer: A

34. What is the maximum number of reactions that can be present in a truss?
A. 1
B. 2
C. 3
D. 4

Answer: B

35. What is the difference between a statically determinate and a statically indeterminate truss?
A. A statically determinate truss has only one solution for the unknown forces, while a statically indeterminate truss may have more than one solution.
B. A statically determinate truss has more unknown forces than the number of equations available to solve them, while a statically indeterminate truss has fewer unknown forces than the number of equations available to solve them.
C. A statically determinate truss is easier to analyze, while a statically indeterminate truss requires more advanced techniques.
D. A statically determinate truss is always more efficient than a statically indeterminate truss.

Answer: C

36. What is the difference between a pinned support and a roller support?
A. A pinned support allows rotation but not translation, while a roller support allows translation but not rotation.
B. A pinned support allows both rotation and translation, while a roller support allows neither.
C. A pinned support is used for horizontal loads, while a roller support is used for vertical loads.
D. A pinned support is always more stable than a roller support.

Answer: A

37. What is the maximum number of members that can be present in a simple truss?
A. 2n-2, where n is the number of joints
B. 2n-3, where n is the number of joints
C. n-1, where n is the number of joints
D. n+1, where n is the number of joints

Answer: B

©subhankar_karmakar

more OBJECTIVE QUESTIONS on ENGINEERING MECHANICS