Showing posts with label fossil fuel. Show all posts
Showing posts with label fossil fuel. Show all posts

Saturday 21 September 2013

IMPORTANT PROPERTIES OF SI ENGINE FUEL

PLEASE SUBSCRIBE MY YOUTUBE CHANNEL:

MY YOUTUBE CHANNEL

THE FUEL CHARACTERISTICS OF INTERNAL COMBUSTION ENGINE:

The fuel characteristics that are important for the performances of
Internal combustion engines are

• Volatility of the Fuel
• Detonation Characteristics
• Power and Efficiency of Engines
• Good thermal properties like heat of combustion and heat of evaporation
• Gum Content
• Sulphur Content
• Aromatic Content
• Cleanliness





IMPORTANT CHARACTERISTICS OF SI ENGINE FUELS

SI (spark-ignition) engines, also known as gasoline engines, use a fuel-air mixture that is ignited by a spark from a spark plug to produce power. Some of the important properties of SI engine fuel include:

 

  1. Octane rating: The octane rating of a fuel measures its resistance to knocking, which is an uncontrolled explosion in the engine cylinder that can damage the engine. The higher the octane rating, the more resistant the fuel is to knocking.
  2. Energy content: The energy content of the fuel determines how much power can be produced from a given amount of fuel. Gasoline has a higher energy content per unit of volume than ethanol, for example.
  3. Volatility: Volatility refers to the ease with which a fuel evaporates. High-volatility fuels can vaporize quickly, which is important for good cold-start performance. However, if a fuel is too volatile, it can also cause vapor lock in hot weather, which can disrupt fuel delivery to the engine.
  4. Stability: Fuel stability refers to the ability of a fuel to resist oxidation and degradation over time. Stable fuels are less likely to form deposits or gum up fuel injectors, which can negatively impact engine performance and fuel efficiency.
  5. Chemical composition: The chemical composition of the fuel can affect its combustion characteristics, including its flame speed and emissions. Gasoline typically contains hydrocarbons, oxygenates (such as ethanol), and various additives to improve performance and reduce emissions.
  6. Cost: The cost of fuel is an important consideration for consumers and businesses alike. Gasoline is typically less expensive than alternative fuels like diesel or natural gas, but its price can fluctuate depending on supply and demand, as well as other market factors.

 

Every SI engines are designed for a particular fuel having some desired qualities. For a good performance of a SI engine the fuel used must have the proper characteristics.
The followings are requirements of a good SI engine fuels or Gasolines.

  • It should readily mix with air to make a uniform mixture at inlet, ie. it must be volatile
  • It must be knock resistant
  • It should not pre-ignite easily
  • It should not tend to decrease the volumetric efficiency of the engine.
  • It should not form gum and varnish
  • Its Sulphur content should be low as it is corrosive
  • It must have a high calorific value

VOLATILITY OF THE FUEL

It is the most important characteristics of a SI engine fuel. Volatility is a physical concept that loosely defined as the tendency to evaporate at a temperature lower than their boiling temperature. It is the most dominant factor that controls the air-fuel ratio inside the combustion chamber.
One of the most important requirements for proper and smooth combustion is the availability of a highly combustible air-fuel mixture at the moment of the start of the ignition inside the combustion chamber.
A highly volatile (of low molecular weight) fuel generates a rich fuel air ratio at low starting temperature, to satisfy the criteria at the starting of the ignition. But, it will create another problem during running operation; it creates vapour bubble which choked the fuel pump delivery system. This phenomenon is known as vapour lock.

A vapour lock thus created restricts the fuel supply due to excessive rapid formation of vapour in the fuel supply system of the carburetor.
High volatility of fuel can also result in excessive evaporation during storage in a tank which will also pose a fire hazards.
Low volatile fuel like kerosene and distillates can be used for SI engines for tractors.

VOLATILITY AND ITS EFFECT ON ENGINE PERFORMANCES

Volatility greatly affects the engine performances and fuel economy characteristics. The most important of them are

  1. ·         Cold and Hot starting
  2. ·         Vapour Lock in fuel delivery system
  3. ·         Short and Long trip economy
  4. ·         Acceleration and Power
  5. ·         Warm Up
  6. ·         Hot Stalling
  7. ·         Carburetor Icing
  8. ·         Crankcase Dilution Deposit formation and Spark Plug Fouling


When the percentage evaporation of the fuel is 0% ~ 20%, it is called front end of volatility curves, and there are 3 major problems that we encounter in this region of volatility curves which is also known as Distillation curves. They are 
    • Cold Starting
    • Hot Starting
    • Vapour Lock

If front end volatility is very low of a SI engine fuel the engine may show the symptoms of "Cold Starting."
 


THE CONCEPT OF COLD STARTING

In order to start an engine a highly combustible mixture rich in fuel is needed at starting temperature near the spark plug. 
As the ambient temperature is low during starting condition, hence the fuel-air mixture must be rich to ensure the start of combustion as sparking of spark plug is not able to start a chemical reaction of combustion near the spark plug.


The limit of air-fuel mixture at the start is
• for rich mixture it is 8:1
• for lean mixture it is 20:1



MECHANISMS OF COLD START:

At low ambient temperature, only a small fraction of total fuel fed to the combustion chamber is able to be effectively evaporated and it creates a insufficiently lean fuel-air mixture that is unable to combust and sustain the combustion process. As a result, the combustion never be able to provide a steady rate of heat supply and engine never starts in this condition. 
This phenomenon is known as cold starting of an IC engine.


To get rid of this problem, we generally apply Choking Process at the start of an engine at ambient temperature. When an Engine becomes hot enough to engineered a sufficiently rich fuel air mixture, the combustion becomes steady and it is known as Warming Up of an IC engine.

Choking is a process generally used to control or regulate air flow into the carburetor where fuel gets mixed with air homogeneously and been fed into combustion chamber. By decreasing air-flow rate into the carburetor, a rich mixture of fuel and air is prepared and fed into the cylinder or combustion chamber, one can increase the vapour content of fuel in the mixture as the reduced air makes the mixture fuel rich and the mixture becomes a combustible inside the combustion chamber.


DETONATION CHARACTERISTICS OF A SI ENGINE FUEL:

 

The detonation characteristics of a fuel refer to its tendency to detonate or explode prematurely in the engine cylinder, leading to engine knock or detonation. This is undesirable as it can cause damage to the engine and reduce its performance and efficiency.

 

In spark-ignition (SI) engines, the detonation characteristics of the fuel are influenced by several factors, including:

 

  1. Octane rating: The octane rating of a fuel is a measure of its ability to resist knocking or detonation. Fuels with higher octane ratings are less prone to detonation and are therefore more suitable for use in high-performance engines.
  2. Chemical characteristics: Fuels with higher percentages of aromatic hydrocarbons or olefins tend to have lower resistance to detonation.
  3. Air-fuel ratio: The air-fuel ratio (AFR) is the ratio of air to fuel in the combustion mixture. AFRs that are too lean (i.e., too much air relative to fuel) can increase the risk of detonation.
  4. Compression ratio: The compression ratio is the ratio of the volume in the engine cylinder when the piston is at the bottom of its stroke to the volume when it is at the top of its stroke. Higher compression ratios can increase the risk of detonation.
  5. Engine operating conditions: The operating conditions of the engine, such as load, speed, and temperature, can affect the detonation characteristics of the fuel.

 

In general, fuels with higher octane ratings and lower percentages of aromatic hydrocarbons and olefins are more resistant to detonation and are therefore preferred for use in SI engines. Additionally, controlling the air-fuel ratio, compression ratio, and engine operating conditions can help to reduce the risk of detonation.

 

 

FACTORS OF DETONATION CHARACTERISTICS:

 

THE OCTANE RATING:

The octane rating is a measure of a fuel's ability to resist knocking or detonation in internal combustion engines. Knocking or detonation occurs when the air-fuel mixture in the engine's cylinder ignites prematurely or unevenly, leading to a rapid and uncontrolled burning of the remaining fuel. This can cause engine damage and reduce overall performance.

Fuels with higher octane ratings have better anti-knock properties and can withstand higher compression ratios and temperatures before auto-ignition occurs. High-performance engines, such as those found in sports cars or high-powered motorcycles, often operate at higher compression ratios and temperatures, which can lead to a greater tendency for knocking. Using a fuel with a higher octane rating helps prevent knocking and maintains engine performance.

On the other hand, some vehicles, especially those with lower compression ratios or engines designed for regular-grade fuel, do not require high-octane gasoline. In such cases, using fuel with a higher octane rating than what the engine needs might not provide any significant benefits and could be a waste of money.

It's essential to use the fuel recommended by the manufacturer for your specific vehicle, as using the wrong octane rating can lead to inefficient combustion and potentially harm the engine. Many modern vehicles have knock sensors and engine management systems that can adjust the engine's performance based on the octane level of the fuel being used, but it's still best to follow the manufacturer's guidelines.

 

THE CHEMICAL COMPOSITION OF A FUEL:

The chemical composition of a fuel can significantly influence its resistance to detonation or knocking. Fuels with higher percentages of aromatic hydrocarbons or olefins tend to have lower resistance to detonation compared to fuels with higher percentages of paraffins (saturated hydrocarbons). Let's explore this further:

  1. Aromatic hydrocarbons: Aromatic hydrocarbons, such as benzene, toluene, and xylene, have a cyclic structure and are known for their high octane number, which indicates good resistance to knocking. However, when present in high concentrations in a fuel, they can contribute to pre-ignition issues and reduce the fuel's overall anti-knock properties. This is why modern gasoline formulations aim to limit the concentration of aromatic hydrocarbons to maintain optimal octane ratings.
  2. Olefins: Olefins, also known as alkenes, are unsaturated hydrocarbons that contain at least one carbon-carbon double bond. Fuels with a higher content of olefins generally have lower octane ratings and are more prone to detonation. This is because the presence of double bonds in the molecular structure makes them more reactive, leading to premature ignition and knocking in high-compression engines.
  3. Paraffins: Paraffins, also known as alkanes, are saturated hydrocarbons with single bonds between carbon atoms. Fuels with higher percentages of paraffins tend to have better anti-knock properties and higher octane ratings. They are less reactive compared to olefins, which makes them more resistant to detonation.

To improve the overall quality and anti-knock properties of gasoline, refiners often use various blending components and additives to achieve the desired octane rating while keeping the concentration of aromatic hydrocarbons and olefins within acceptable limits.

It's essential for fuel manufacturers to strike a balance in the chemical composition of gasoline to ensure optimal engine performance, fuel efficiency, and emissions control, while also meeting regulatory requirements and environmental standards.

 

THE AIR-FUEL RATIO:

The air-fuel ratio (AFR) refers to the ratio of the mass or volume of air to the mass or volume of fuel in the combustion mixture used by an internal combustion engine. It is a crucial parameter that significantly affects engine performance, fuel efficiency, and emissions.

In the context of detonation or knocking, an AFR that is too lean (meaning there is too much air relative to the amount of fuel) can indeed increase the risk of detonation. When the mixture is lean, there is an excess of oxygen compared to the available fuel molecules. This can lead to higher combustion temperatures and pressures, which can cause the air-fuel mixture to ignite prematurely or unevenly, resulting in knocking.

Detonation occurs because the rapid and uncontrolled burning of the lean mixture generates pressure waves that collide and produce a knocking sound. This can put excessive stress on the engine components and lead to engine damage over time.

On the other hand, an AFR that is too rich (meaning there is too much fuel relative to the amount of air) can also lead to knocking. A rich mixture tends to burn more slowly, and the unburned fuel can create hot spots in the combustion chamber, increasing the likelihood of pre-ignition and knocking.

To minimize the risk of knocking and achieve optimal engine performance, modern engines are equipped with sophisticated engine management systems and knock sensors that can adjust the air-fuel ratio in real-time based on various factors, such as engine load, speed, and temperature. These systems help maintain the AFR within the appropriate range to ensure efficient combustion and reduce the risk of detonation.

For high-performance engines or engines modified for increased power output, tuning the air-fuel ratio carefully is crucial to avoid knocking and maximize performance. It's important to follow the manufacturer's recommendations or consult with experienced tuners to ensure that the engine operates within safe and optimal parameters.

THE COMPRESSION RATIO:

The compression ratio is a crucial parameter in internal combustion engines, and it represents the ratio of the cylinder volume when the piston is at its bottom dead center (BDC) to the cylinder volume when the piston is at its top dead center (TDC). It is typically expressed as a numerical value, such as 10:1 or 12:1, representing the ratio of the larger volume (at BDC) to the smaller volume (at TDC).

Higher compression ratios indeed increase the risk of detonation, especially if the fuel used has a low octane rating or if other factors that promote knocking are present. Here's why:

  1. Increased Temperature and Pressure: Higher compression ratios compress the air-fuel mixture more, resulting in increased temperature and pressure in the combustion chamber. This elevated pressure and temperature can cause the air-fuel mixture to autoignite prematurely, leading to knocking or detonation.
  2. Reduced Time for Combustion: With higher compression ratios, the time available for the air-fuel mixture to burn completely is reduced. This can lead to incomplete combustion, which leaves unburned fuel and hot spots in the combustion chamber, increasing the likelihood of knocking.
  3. Increased Sensitivity to Fuel Properties: Fuels with lower octane ratings are more likely to experience detonation under higher compression ratios. The lower the octane rating, the more susceptible the fuel is to pre-ignition, and the greater the risk of knocking in high-compression engines.

To mitigate the risk of detonation in high-compression engines, it is crucial to use fuels with higher octane ratings that can withstand the elevated pressures and temperatures without prematurely igniting. Additionally, modern engine management systems with knock sensors can detect knocking and adjust the engine's timing and air-fuel ratio to reduce the likelihood of detonation.

Engine designers and tuners carefully consider the compression ratio when developing or modifying engines to ensure optimal performance while avoiding harmful knocking or detonation. Following the manufacturer's recommendations regarding fuel type and engine specifications is essential to maintain the engine's longevity and performance.

 

THE ENGINE OPERATING CONDITION:

The operating conditions of an engine, including factors such as load, speed, and temperature, have a significant impact on the detonation characteristics of the fuel being used. Let's explore how these factors can influence the likelihood of detonation:

  1. Engine Load: The engine load refers to the amount of power the engine is producing to meet the demands of driving or operating the vehicle. Higher engine loads, such as during acceleration or towing heavy loads, result in increased pressure and temperature in the combustion chamber. This elevated pressure and temperature can make the air-fuel mixture more prone to detonation, especially if the fuel used has a lower octane rating. As a result, engines under high load conditions are more susceptible to knocking.
  2. Engine Speed: Engine speed, commonly measured in revolutions per minute (RPM), determines how frequently the combustion process occurs in the cylinders. Higher engine speeds mean that the air-fuel mixture is being compressed and ignited more frequently. If the engine is operating at high RPM, there is less time for the air-fuel mixture to burn completely, increasing the chances of knocking.
  3. Engine Temperature: The temperature of the engine components, particularly the combustion chamber, plays a crucial role in the risk of detonation. Higher engine temperatures can cause hot spots in the combustion chamber, which can lead to premature ignition of the air-fuel mixture. This is especially true when the engine is running under heavy load or high RPM conditions.
  4. Intake Air Temperature: The temperature of the intake air entering the engine also affects the likelihood of knocking. Cooler air is denser and can reduce the chances of knocking, as it allows for a higher air-to-fuel ratio without increasing the risk of detonation. Engines equipped with intercoolers or air intake temperature control systems can optimize the intake air temperature for improved performance and reduced knocking.
  5. Ignition Timing: The ignition timing refers to the precise moment when the spark plug ignites the air-fuel mixture in the cylinder. Advanced ignition timing (igniting the mixture earlier) can increase the risk of knocking, especially under high load and high temperature conditions. Retarding the ignition timing (igniting the mixture later) can help reduce knocking in some cases.

To optimize engine performance and reduce the risk of detonation, modern engines use sophisticated engine management systems that continuously monitor various parameters and adjust ignition timing, air-fuel ratio, and other factors to maintain safe and efficient operation. Additionally, using high-quality fuels with appropriate octane ratings can also play a vital role in preventing knocking under varying operating conditions.

Saturday 29 September 2012

FUEL USED IN IC ENGINES AND REFINERY PROCCESSES; EME-505

FUEL USED IN IC ENGINES
An article on fossil fuels

Internal Combustion Engines are the generators of the energy mainly used for transportation. Almost more than 90% of the total IC Engines run on fossil fuels or different derivatives of petroleum.

IC Engines are a kind of open cycle heat engine where heat is supplied to the engine by the combustion of working fluids thus releasing huge amount of energy due to the combustion processes of the working fluids. Combustible working fluids are called fuels.


The natural petroleum oil is the largest single source of internal combustion engine fuels. Petrol and Diesel are the most used among them. The boiling point of petrol is 30°C to 200°C and that of diesel oil is from 200°C to 375°C.


Fuels of most of the IC Engines are the derivatives of Petroleum like gasoline, diesel oil, kerosene, jet fuel etc. All of these fuels are produced during the fractional distillation of Petroleum Oil obtained from crude from oil wells.


The fuels used in the IC Engines are designed to satisfy the performance requirements of the engine system in which they are used. As a result the fuels must have certain


  • (i) physical,
  • (ii) chemical and
  • (iii) combustion properties.

Following are the some characteristics a fuel must have in order to produce the desirable output to the engine performance.
  1. A fuel must have a large energy density to be capable to release huge amount of energy during its combustion in side the combustion chamber.
  2. A fuel must posses a good combustion quality to produce large amount of energy in smooth way.
  3. A fuel must have high thermal stability or pre-ignition may occur.
  4. A fuel must show a low deposit forming tendency else gum formation and other deposit forming processes will hamper the combustion process.
  5. A fuel must be non-toxic, easy to handle and storage.
CRUDE PETROLEUM OIL:

Petroleum or often referred as "Crude Oil" is a naturally occurring inflammable mixtures of liquid and mud and it contains a complex mixture of different hydrocarbons of various molecular weights. It is mainly recovered through a process called "Oil Drilling".


Oil Wells and Gas Wells:


An oil well produces mainly crude oil with some natural gas dissolved in it. In contrast a gas well produces natural gases although it may contain heavier hydrocarbons like pentane, hexane or hepthane in gaseous state due to the extreme pressure and temperature inside the well, but at surface conditions condensation starts and forms "Natural Gas Condensate" or simply known as Condensate.




COMPOSITIONS OF CRUDE WELL:

Basically, crude well is the muddy mixtures of different hydrocarbons of different molecular weights. Alkanes, Cyclo-alkanes or napthenes, aromatics. It contains nitrogen, oxygen, sulfur and phosphorous. It may also contains metallic compounds too.


Four different types of hydrocarbon molecules appear in crude oil. The relative percentages are widely varied from oil to oil. They are:


  • i) Paraffins (alkanes,  CnH2n + 2 )
  • ii) Olefins (alkenes, CnH2n),
  • iii) Napthenes (cyclo-alkanes, CnH2n ),
  • iv) Aromatics (having benzene ring, CnH2n - 6).

It is then refined by fractional distillation in oil refinery to obtain a large number of consumer products, from petrol or gasoline, diesel to kerosene, heavy oil, fuel oil, asphalt, chemical reagents, plastics etc.

Most of the derivatives of the petroleum have been used as fuel or heating purpose. The major products of a petroleum refinery are:



  • (i) Gasoline,
  • (ii) Kerosene,
  • (iii) Diesel Oil,
  • (iv) Fuel oil,
  • (v) Heavy Oil,
  • (vi) Lubricating Oil,
  • (vii) Asphalts
INTRODUCTION: 

As the demands for gasoline, kerosene/ jet fuel and diesel oil are maximum, refineries around the world have started to convert heavy fuels and other higher hydrocarbons into gasoline, kerosene and diesel oil. To perform this, refineries have adopted several thermo-chemical processes those can convert high molecular weight hydrocarbons into lighter ones by breaking them.

GENERAL REFINERY PROCESSES:


Petroleum refining has evolved continuously in response to changing consumer demand for better and different products. The original requirement was to produce kerosene as a cheaper and better source of light than whale oil. The development of the internal combustion engine led to the production of gasoline and diesel fuels. The evolution of the airplane created an initial need for high-octane aviation gasoline and then for jet fuel, a sophisticated form of the original product, kerosene. Present-day refineries produce a variety of products including many required as feedstock for the petrochemical industry.



a) Distillation Processes:

The first refinery, opened in 1861, produced kerosene by simple atmospheric distillation. Its by-products included tar and naphtha. It was soon discovered that distilling petroleum under vacuum could produce high-quality lubricating oils. However, for the next 30 years kerosene was the product consumer wanted. Two significant events changed this situation. The invention of the electric light decreased the demand for kerosene and the invention of the internal combustion engine created a demand for diesel fuel and gasoline (naphtha). 



b) Thermal Cracking Processes:

With the advent of mass production and World War I, the number of gasoline-powered vehicles increased dramatically and the demand for gasoline grew accordingly. However, distillation processes produced only a certain amount of gasoline from crude oil. In 1913, the thermal cracking process was developed, which subjected heavy fuels to both pressure and intense heat, physically breaking the large molecules into smaller ones to produce additional gasoline and distillate fuels. Visbreaking, another form of thermal cracking, was developed in the late 1930's to produce more desirable and valuable products. 



c) Catalytic Processes:

Higher-compression gasoline engines required higher-octane gasoline with better antiknock characteristics. The introduction of catalytic cracking and polymerization processes in the mid- to late 1930's met the demand by providing improved gasoline yields and higher octane numbers.   Alkylation, another catalytic process developed in the early 1940's, produced more high-octane aviation gasoline and petrochemical feedstock for explosives and synthetic rubber. Subsequently, catalytic isomerization was developed to convert hydrocarbons to produce increased quantities of alkylation feedstock. Improved catalysts and process methods such as hydrocracking and reforming were developed throughout the 1960's to increase gasoline yields and improve antiknock characteristics. These catalytic processes also produced hydrocarbon molecules with a double bond (alkenes) and formed the basis of the modern petrochemical industry. 



d) Treatment Processes:

Throughout the history of refining, various treatment methods have been used to remove non-hydrocarbons, impurities, and other constituents that adversely affect the properties of finished products or reduce the efficiency of the conversion processes. Treating can involve chemical reaction and/or physical separation. Typical examples of treating are chemical sweetening, acid treating, clay contacting, caustic washing, hydrotreating, drying, solvent extraction, and solvent dewaxing. Sweetening compounds and acids desulfurize crude oil before processing and treat products during and after processing. 

Following the Second World War, various reforming processes improved gasoline quality and yield and produced higher-quality products. Some of these involved the use of catalysts and/or hydrogen to change molecules and remove sulfur. 



 Basics of Hydrocarbon Chemistry:

Crude oil is a mixture of hydrocarbon molecules, which are organic compounds of carbon and hydrogen atoms that may include from one to 60 carbon atoms. The properties of hydrocarbons depend on the number and arrangement of the carbon and hydrogen atoms in the molecules. The simplest hydrocarbon molecule is one carbon atom linked with four hydrogen atoms: methane. All other variations of petroleum hydrocarbons evolve from this molecule. 
 
Hydrocarbons containing up to four carbon atoms are usually gases, those with 5 to 19 carbon atoms are usually liquids and those with 20 or more are solids. The refining process uses chemicals, catalysts, heat, and pressure to separate and combine the basic types of hydrocarbon molecules naturally found in crude oil into groups of similar molecules. The refining process also rearranges their structures and bonding patterns into different hydrocarbon molecules and compounds. Therefore it is the type of hydrocarbon (paraffinic, naphthenic, or aromatic) rather than its specific chemical compounds that is significant in the refining process. 


Principal Groups of Hydrocarbon
  • Paraffins - The paraffinic series of hydrocarbon compounds found in crude oil have the general formula CnH2n+2 and can be either straight chains (normal) or branched chains (isomers) of carbon atoms. The lighter, straight chain paraffin molecules are found in gases and paraffin waxes. Examples of straight-chain molecules are methane, ethane, propane, and butane (gases containing from one to four carbon atoms), and pentane and hexane (liquids with five to six carbon atoms). The branched-chain (isomer) paraffins are usually found in heavier fractions of crude oil and have higher octane numbers than normal paraffins. These compounds are saturated hydrocarbons, with all carbon bonds satisfied, that is, the hydrocarbon chain carries the full complement of hydrogen atoms.
    • Example of simplest hydrocarbon molecule: Methane (CH4), Examples of straight chain paraffin molecule (Butane) and branched paraffin molecule (Isobutane) with same chemical formula (C4H10)


  • Aromatics - Aromatics are unsaturated ring-type (cyclic) compounds which react readily because they have carbon atoms that are deficient in hydrogen. All aromatics have at least one benzene ring (a single-ring compound characterized by three double bonds alternating with three single bonds between six carbon atoms) as part of their molecular structure. Naphthalenes are fused double-ring aromatic compounds. The most complex aromatics, polynuclears (three or more fused aromatic rings), are found in heavier fractions of crude oil.
    • Example of simple aromatic compound: Benzene (C6H6), Examples of simple double-ring aromatic compound: Naphthalene (C10H8)


  • Naphthenes - Naphthenes are saturated hydrocarbon groupings with the general formula CnH2n, arranged in the form of closed rings (cyclic) and found in all fractions of crude oil except the very lightest. Single-ring naphthenes (monocycloparaffins) with five and six carbon atoms predominate, with two-ring naphthenes (dicycloparaffins) found in the heavier ends of naphtha.
    • Example of typical single-ring naphthene: Cyclohexane (C6H12), Examples of naphthene with same chemical formula (C6H12) but different molecular structure: Methyl cyclopentane (C6H12)
Other Hydrocarbons
  • Alkenes - Alkenes are mono-olefins with the general formula CnH2n and contain only one carbon-carbon double bond in the chain. The simplest alkene is ethylene, with two carbon atoms joined by a double bond and four hydrogen atoms. Olefins are usually formed by thermal and catalytic cracking and rarely occur naturally in unprocessed crude oil.
    • Example of simples Alkene: Ethylene (C2H4), Typical Alkenes with the same chemical formula (C4H8) but different molecular structures: 1-Butene and Isobutene


  • Dienes and Alkynes - Dienes, also known as diolefins, have two carbon-carbon double bonds. The alkynes, another class of unsaturated hydrocarbons, have a carbon-carbon triple bond within the molecule. Both these series of hydrocarbons have the general formula CnH2n-2. Diolefins such as 1,2-butadiene and 1,3-butadiene, and alkynes such as acetylene,occur in C5 and lighter fractions from cracking. The olefins, diolefins, and alkynes are said to be unsaturated because they contain less than the amount of hydrogen necessary to saturate all the valences of the carbon atoms. These compounds are more reactive than paraffins or naphthenes and readily combine with other elements such as hydrogen, chlorine, and bromine.
    • Example of simplest Alkyne: Acetylene (C2H2), Typical Diolefins with the same chemical formula (C4H6) but different molecular structures: 1,2-Butadiene and 1,3-Butadiene
Non-hydrocarbons
  • Sulfur Compounds -  Sulfur may be present in crude oil as hydrogen sulfide (H2S), as sulfur compounds such as mercaptans, sulfides, disulfides, thiophenes, etc. or as elemental sulfur. Each crude oil has different amounts and types of sulfur compounds, but as a rule the proportion, stability, and complexity of the compounds are greater in heavier crude-oil fractions. Hydrogen sulfide is a primary contributor to corrosion in refinery processing units. Other corrosive substances are elemental sulfur and mercaptans. Moreover, the corrosive sulfur compounds have an obnoxious odor.  Pyrophoric iron sulfide results from the corrosive action of sulfur compounds on the iron and steel used in refinery process equipment, piping, and tanks. The combustion of petroleum products containing sulfur compounds produces undesirables such as sulfuric acid and sulfur dioxide. Catalytic hydrotreating processes such as hydrodesulfurization remove sulfur compounds from refinery product streams. Sweetening processes either remove the obnoxious sulfur compounds or convert them to odorless disulfides, as in the case of mercaptans.

  • Oxygen Compounds -  Oxygen compounds such as phenols, ketones, and carboxylic acids occur in crude oils in varying amounts. 

  • Nitrogen Compounds -  Nitrogen is found in lighter fractions of crude oil as basic compounds, and more often in heavier fractions of crude oil as nonbasic compounds that may also include trace metals such as copper, vanadium, and/or nickel. Nitrogen oxides can form in process furnaces. The decomposition of nitrogen compounds in catalytic cracking and hydrocracking processes forms ammonia and cyanides that can cause corrosion. 

  • Trace Metals -  Metals, including nickel, iron, and vanadium are often found in crude oils in small quantities and are removed during the refining process. Burning heavy fuel oils in refinery furnaces and boilers can leave deposits of vanadium oxide and nickel oxide in furnace boxes, ducts, and tubes. It is also desirable to remove trace amounts of arsenic, vanadium, and nickel prior to processing as they can poison certain catalysts. 

  • Salts -  Crude oils often contain inorganic salts such as sodium chloride, magnesium chloride, and calcium chloride in suspension or dissolved in entrained water (brine). These salts must be removed or neutralized before processing to prevent catalyst poisoning, equipment corrosion, and fouling. Salt corrosion is caused by the hydrolysis of some metal chlorides to hydrogen chloride (HCl) and the subsequent formation of hydrochloric acid when crude is heated. Hydrogen chloride may also combine with ammonia to form ammonium chloride (NH4Cl), which causes fouling and corrosion. 

  • Carbon Dioxide -  Carbon dioxide may result from the decomposition of bicarbonates present in or added to crude, or from steam used in the distillation process. 
  • Naphthenic Acids -  Some crude oils contain naphthenic (organic) acids, which may become corrosive at temperatures above 450° F when the acid value of the crude is above a certain level.
 Major Refinery Products
  • Gasoline. The most important refinery product is motor gasoline, a blend of hydrocarbons with boiling ranges from ambient temperatures to about 400 °F. The important qualities for gasoline are octane number (antiknock), volatility (starting and vapor lock), and vapor pressure (environmental control). Additives are often used to enhance performance and provide protection against oxidation and rust formation.
  • Kerosene. Kerosene is a refined middle-distillate petroleum product that finds considerable use as a jet fuel and around the world in cooking and space heating. When used as a jet fuel, some of the critical qualities are freeze point, flash point, and smoke point. Commercial jet fuel has a boiling range of about 375°-525° F, and military jet fuel 130°-550° F. Kerosene, with less-critical specifications, is used for lighting, heating, solvents, and blending into diesel fuel.
  • Liquified Petroleum Gas (LPG). LPG, which consists principally of propane and butane, is produced for use as fuel and is an intermediate material in the manufacture of petrochemicals. The important specifications for proper performance include vapor pressure and control of contaminants.
  • Distillate Fuels. Diesel fuels and domestic heating oils have boiling ranges of about 400°-700° F. The desirable qualities required for distillate fuels include controlled flash and pour points, clean burning, no deposit formation in storage tanks, and a proper diesel fuel cetane rating for good starting and combustion.
  • Residual Fuels. Many marine vessels, power plants, commercial buildings and industrial facilities use residual fuels or combinations of residual and distillate fuels for heating and processing. The two most critical specifications of residual fuels are viscosity and low sulfur content for environmental control.
  • Coke and Asphalt. Coke is almost pure carbon with a variety of uses from electrodes to charcoal briquets. Asphalt, used for roads and roofing materials, must be inert to most chemicals and weather conditions.
  • Solvents. A variety of products, whose boiling points and hydrocarbon composition are closely controlled, are produced for use as solvents. These include benzene, toluene, and xylene.
  • Petrochemicals. Many products derived from crude oil refining, such as ethylene, propylene, butylene, and isobutylene, are primarily intended for use as petrochemical feedstock in the production of plastics, synthetic fibers, synthetic rubbers, and other products.
  • Lubricants. Special refining processes produce lubricating oil base stocks. Additives such as demulsifiers, antioxidants, and viscosity improvers are blended into the base stocks to provide the characteristics required for motor oils, industrial greases, lubricants, and cutting oils. The most critical quality for lubricating-oil base stock is a high viscosity index, which provides for greater consistency under varying temperatures.
Common Refinery Chemicals
  • Leaded Gasoline Additives: Tetraethyl lead (TEL) and tetramethyl lead (TML) are additives formerly used to improve gasoline octane ratings but are no longer in common use except in aviation gasoline.
  • Oxygenates: Ethyl tertiary butyl ether (ETBE), methyl tertiary butyl ether (MTBE), tertiary amyl methyl ether (TAME), and other oxygenates improve gasoline octane ratings and reduce carbon monoxide emissions.
  • Caustics: Caustics are added to desalting water to neutralize acids and reduce corrosion. They are also added to desalted crude in order to reduce the amount of corrosive chlorides in the tower overheads. They are used in some refinery treating processes to remove contaminants from hydrocarbon streams.
  • Sulfuric Acid and Hydrofluoric Acid: Sulfuric acid and hydrofluoric acid are used primarily as catalysts in alkylation processes. Sulfuric acid is also used in some treatment processes.

    USEFUL LINKS:   
    refinery topics